Predict using a fitted metamodel
predict_metamodel.RdPredict using a fitted metamodel
Arguments
- model
model object. Built using a function from the PACHECK package.
- inputs
dataframe or vector. When choosing a vector in the case of a three-variable model: the first, second, third, and fourth value represent the input for the first, second, third, and FIRST variable, respectively. Default gives the predictions based on the training data.
- output_type
character. Choose an output: 'dataframe', 'long_df' (long data.frame) or 'vector'.
Value
returns a vector of the the predictions ('vector' output_type) or the parameter values used for the predictions and the predictions ('dataframe' or 'long_df' output_type).
Examples
#Making 3 predictions for a two-variable metamodel,
# using a vector as input, and yielding a dataframe as output.
data(df_pa)
lm_fit = fit_lm_metamodel(df = df_pa,
y_var = "inc_qaly",
x_vars = c("p_pfsd", "p_pdd")
)
vec = c(0.1,0.2,0.08,0.15,0.06,0.25)
predict_metamodel(model = lm_fit,
inputs = vec,
output_type = "dataframe"
)
#> p_pfsd p_pdd predictions
#> 1 0.10 0.15 0.2256934
#> 2 0.20 0.06 -0.2006800
#> 3 0.08 0.25 0.3802208